
 INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

 ISSN: 2320-1363

1

Horizontal Layout Preparation Using Automatic Machine Learning

Algorithms

I.Umamaheswari*1, B.Mahesh*2

M.Tech (CSE) Student, Department of CSE, Dr. K.V. SRCEW, Dist: Kurnool, AP, India

Assistant Professor, Depart of CSE, Dr. K.V. SRCEW, Dist: Kurnool, AP, India

 ABSTRACT

To analyze data efficiently, Data mining systems are widely using datasets with columns in horizontal tabular layout. Preparing a data

set is more complex task in a data mining project, requires many SQL queries, joining tables and aggregating columns. Conventional RDBMS

usually manage tables with vertical form. Aggregated columns in a horizontal tabular layout returns set of numbers, instead of one number per

row. Evaluation of horizontal aggregations is done with three methods. The methods are CASE: Exploiting the programming CASE construct;

SPJ: Based on standard relational algebra operators (SPJ Queries); PIVOT: Using the PIVOT operator which is offered by some DBMSs. The

data obtained from horizontal aggregations can be used for Market Basket Analysis in finding frequent item set mining by using Analysis

Services of SQL Server.

KEYWORDS: DBMS, SPJ Queries, CASE Method.

I.INTRODUCTION:

Horizontal aggregation is new class of function to

return aggregated columns in a horizontal layout. Most algorithms

require datasets with horizontal layout as input with several

records and one variable or dimensions per columns. Managing

large data sets without DBMS support can be a difficult task.

Trying different subsets of data points and dimensions is more

flexible, faster and easier to do inside a relational database with

SQL queries than outside with alternative tool. Horizontal

aggregation can be performing by using operator, it can easily be

implemented inside a query processor, much like a select, project

and join. PIVOT operator on tabular data that exchange rows,

enable data transformations useful in data modeling, data analysis,

and data presentation There are many existing functions and

operators f or aggregation I n Structured Query Language. The

most commonly used aggregation is the sum of a column and other

aggregation operators return the average, maximum, minimum or

row count over groups of rows. All operations for aggregation

have many limitations to build large data sets for data mining

purposes. Database schemas are also highly normalized for On-

Line Transaction Processing (OLTP) systems where data sets that

are stored in a relational database or data warehouse. But data

mining, statistical or machine learning algorithms generally require

aggregated data in summarized form. Data mining algorithm

requires suitable input in the form of cross tabular (horizontal)

form; significant effort is required to compute aggregations for this

purpose. Such effort is due to the amount and complexity of SQL

code which needs to be written, optimized and tested.

 Our proposed horizontal aggregations provide several

unique features and advantages. First, they represent a template to

generate SQL code from a data mining tool. Such SQL code

automates writing SQL queries, optimizing them, and testing them

for correctness. This SQL code reduces manual work in the data

preparation phase in a data mining project. Second, since SQL

code is automatically generated it is likely to be more efficient than

SQL code written by an end user. For instance, a person who does

not know SQL well or someone who is not familiar with the

database schema (e.g., a data mining practitioner). Therefore, data

sets can be created in less time. Third, the data set can be created

entirely inside the DBMS. In modern database environments, it is

unfortunately, exporting large tables outside a DBMS is slow,

creates inconsistent copies of the same data and compromises

database security. Therefore, we provide a more efficient, better

integrated and more secure solution compared to external data

mining tools.

II.RELATED WORK:

SQL extensions to define aggregate functions for

association rule mining. Their optimizations have the purpose of

avoiding joins to express cell formulas, but are not optimized to

perform partial transposition for each group of result rows. Conor

Cunningalam [1] proposed an optimization and Execution

strategies in an RDBMS which uses two operators i.e., PIVOT

operator on tabular data that exchange rows and columns, enable

data transformations useful in data modeling, data analysis, and

data presentation. They can quite easily be implemented inside a

query processor system, much like select, project, and join

operator. Such a design provides opportunities for better

performance, both during query optimization and query execution.

 INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

 ISSN: 2320-1363

2

Pivot is an extension of Group By with unique restrictions and

optimization opportunities, and this makes it very easy to introduce

incrementally on top of existing grouping implementations. H

Wang.C.Zaniolo [2] proposed a small but Complete SQL

Extension for data Mining and Data Streams. This technique is a

powerful database language and system that enables users to

develop complete data-intensive applications in SQL by writing

new aggregates and table functions in SQL, rather than in

procedural languages as in current Object-Relational systems. The

ATLaS system consist of applications including various data

mining functions, that have been coded in ATLaS‟ SQL, and

execute with a modest (20–40%) performance overhead with

respect to the same applications written in C/C++. This system can

handle continuous queries using the schema and queries in Query

Repository C.Ordonez introduced two aggregation functions.

These functions are vertical aggregations and horizontal

aggregations. Vertical aggregations return one row for each

percentage in vertical form like standard SQL aggregations.

Horizontal aggregations returns each set of percentages adding

100% on the same row in horizontal layout. Experiments study

different percentage query optimization strategies and compare

evaluation time of percentage queries. [6] Horizontal aggregations

are capable of producing data sets that are used for data mining

activities. This paper presents three horizontal aggregations

methods CASE, PIVOT and SPJ. CASE is based on the SQL

CASE construct, PIVOT makes use of built in pivoting facility in

SQL while SPJ uses standard SQL aggregations.

 Fig.1. Example of F, FV, and FH.

Fig. 1 gives an example showing the input table F, a

traditional vertical sum() aggregation stored in FV , and a

horizontal aggregation stored in FH. The basic SQL aggregation

query is: SELECT D1;D2, sum(A) FROM F GROUP BY D1;D2

ORDER BY D1;D2; Notice table FV has only five rows because

D1 ¼ 3 and D2 ¼ Y do not appear together. Also, the first row in

FV has null in A following SQL evaluation semantics. On the

other hand, table FH has three rows and two (d ¼ 2) non key

columns, effectively storing six aggregated values. In FH it is

necessary to populate the last row with null. Therefore, nulls may

come from F or may be introduced by the horizontal layout. In

addition, a horizontal layout is generally more I/O efficient than a

vertical layout for analysis. Notice these queries have ORDER BY

clauses to make output easier to understand, but such order is

irrelevant for data mining algorithms. In general, we omit ORDER

BY clauses.

III. Execution strategies in horizontal

aggregations

Our main goal is to define a template to generate SQL code

combining aggregation and transposition (pivoting). A second goal

is to extend the SELECT statement with a clause that combines

transposition with aggregation. Consider the following GROUP

BY query in standard SQL that takes a subset L1; . . . ; Lm from

D1; . . .;Dp: SELECT L1; ::;Lm, sum(A) FROM F GROUP BY

L1; . . . ; Lm; This aggregation query will produce a wide table

with m þ 1 columns (automatically determined), with one group

for each unique combination of values L1; . . . ; Lm and one

aggregated value per group (sum(A) in this case). In order to

evaluate this query the query optimizer takes three input

parameters: 1) the input table F, 2) the list of grouping columns

L1; . . . ; Lm, 3) the column to aggregate (A). The basic goal of a

horizontal aggregation is to transpose (pivot) the aggregated

column A by a column subset of L1; . . . ; Lm; for simplicity

assume such subset is R1; . . .;Rk where k < m. In other words, we

partition the GROUP BY list into two sublists: one list to produce

each group (j columns L1; . . . ; Lj) and another list (k columns R1;

. . .;Rk) to transpose aggregated values, where fL1; . . . ; Ljg \ fR1;

. . .;Rkg ¼ ;. Each distinct combination of fR1; . . .;Rkg will

automatically produce an output column. In particular, if k ¼ 1

then there are j_R1 ðFÞj columns (i.e., each value in R1 becomes a

column storing one aggregation). Therefore, in a horizontal

aggregation there are four input parameters to generate SQL code:

1. The input table F,

2. The list of GROUP BY columns L1; . . . ; Lj,

3. The column to aggregate (A),

4.The list of transposing columns R1; . . .;Rk.

Horizontal aggregations preserve evaluation semantics of standard

(vertical) SQL aggregations. The main difference will be returning

a table with a horizontal layout, possibly having extra nulls.

IV. Proposed syntax in executed sql

We must point out the proposed extension represents

nonstandard SQL because the columns in the output table are not

known when the query is parsed. SELECT L1; ::; Lj, HðABYR1; .

. .;RkÞ FROM F GROUP BY L1; . . . ; Lj; We believe the

subgroup columns R1; . . .;Rk should be a parameter associated to

the aggregation itself. That is why they appear inside the

parenthesis as arguments, but alternative syntax definitions are

feasible. In the context of our work, HðÞ represents some SQL

aggregation (e.g.,sumðÞ, countðÞ, minðÞ, maxðÞ, avgðÞ). The

 INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

 ISSN: 2320-1363

3

function HðÞ must have at least one argument represented by A,

followed by a list of columns. The result rows are determined by

columns L1; . . . ; Lj in the GROUP BY clause if present. Result

columns are determined by all potential combinations of columns

R1; . . .;Rk, where k ¼ 1 is the default.

4.1 SPJ Method
The SPJ method is based on relational operators only.

The basic idea is to create one table with a vertical aggregation for

each result column, and then join all those tables to produce FH.

We aggregate from F into d projected tables with d Select- Project-

Join- Aggregation queries (selection, projection, join, aggregation).

Each table FI corresponds to one sub grouping combination and

has {L1, . . ., Lj} as primary key and an aggregation on A as the

only non-key column. It is necessary to introduce an additional

table F0 that will be outer joined with projected tables to get a

complete result set. We propose two basic sub strategies to

compute FH. The first one directly aggregates from F. The second

one computes the equivalent vertical aggregation in a temporary

table FV grouping by L1, . . ., Lj, R1, . . .,Rk. Then horizontal

aggregations can be instead computed from FV, which is a

compressed version of F, since standard aggregations are

distributive. In a horizontal aggregation there are four input

parameters to generate SQL code (i) the input table F (ii) the list of

GROUP BY columns L1, …… ,Lj (iii) the column to aggregate

(A) and (iv) the list of transposing columns R1, … ,Rk. We extend

standard SQL aggregate functions with a transposing BY clause

followed by a list of columns (i.e. R1, … ,Rk) to produce a

horizontal set of numbers instead of one number. Proposed syntax

is as follows. SELECT (L1, …… ,Lj), H(A BY R1, … ,Rk)

FROM F GROUP BY (L1, …… ,Lj)

4.2 CASE METHOD

The case statement returns a value selected from a set of values

based on boolean expressions. We propose two basic sub strategies

to compute FH. In a similar manner to SPJ, the first one directly

aggregates from F and the second one computes the vertical

aggregation in a temporary table FV and then horizontal

aggregations are indirectly computed from FV. The SQL code to

compute horizontal aggregations directly from F is as follows:

observe V ðÞ is a standard (vertical) SQL aggregation that has a

“case” statement as argument. SELECT DISTINCT R1; . . .;Rk

FROM F; INSERT INTO FH SELECT L1; . . . ; Lj V(CASE

WHEN R1 ¼ v11 and . . . and Rk ¼ vk1 THEN A ELSE null

END)

.. ,V(CASE WHEN R1 ¼ v1d and . . . and Rk ¼ vkd THEN A

ELSE null END) FROM F GROUP BY L1; L2; . . . ; Lj; For this

method we use the CASE programming construct available in

SQL. The case statement returns a value selected from a set of

values based on Boolean expressions. From a relational database

theory point of view this is equivalent to doing a simple

projection/aggregation query where each monkey value is given by

a function that returns a number based on some conjunction of

conditions. We propose two basic sub-strategies to compute FH. In

a similar manner to SPJ, the first one directly aggregates from F

and the second one computes the vertical aggregation in a

temporary table FV and then horizontal aggregations are indirectly

computed from FV.

4.3 PIVOT METHOD

We consider the PIVOT operator which is a built-in

operator in a commercial DBMS. Since this operator can perform

transposition it can help evaluating horizontal aggregations. The

PIVOT method internally needs to determine how many columns

are needed to store the transposed table and it can be combined

with the GROUP BY clause. The basic syntax to exploit the

PIVOT operator to compute a horizontal aggregation assuming one

BY column for the right key columns (i.e., k ¼ 1) is as follows:

We consider the PIVOT operator which is a built-in operator in a

commercial DBMS. Since this operator can perform transposition

it can help evaluating horizontal aggregations. The PIVOT method

internally needs to determine how many columns are needed to

store the transposed table and it can be combined with the GROUP

BY clause. The basic syntax to exploit the PIVOT operator to

compute a horizontal aggregation assuming one BY column for the

right key columns (i.e., k ¼ 1) is as follows: SELECT DISTINCT

R1

FROM F; /* produces v1; . . . ; vd */ SELECT L1; L2; . . . ; Lj ,v1;

v2; . . . ; vd

INTO Ft FROM F PIVOT(V(A) FOR R1 in (v1; v2; . . . ; vd))

AS P; SELECT L1; L2; . . . ; Lj ,V ðv1Þ; V ðv2Þ; . . . ; V ðvdÞ

INTO FH FROM Ft GROUP BY L1; L2; . . . ; Lj;

This set of queries may be inefficient because Ft can be a large

intermediate table. We introduce the following optimized set of

queries which reduces of the intermediate

table: SELECT DISTINCT R1 FROM F; /* produces v1; . . . ; vd

*/ SELECT L1; L2; . . . ; Lj ,v1; v2; . . . ; vd INTO FH FROM (

SELECT L1; L2; . . . ; Lj;R1;A FROM F) Ft

PIVOT(V ðAÞ FOR R1 in (v1; v2; . . . ; vd)

) AS P; 684 IEEE TRANSACTIONS ON KNOWLEDGE AND

DATA ENGINEERING, VOL. 24, NO. 4, APRIL 2012 Notice

that in the optimized query the nested query trims F from columns

that are not later needed. That is, the nested query projects only

those columns that will participate in FH. Also, the first and

second queries can be computed from FV

V. GENERATED SQL QUERY FOR

THE EXAMPLE figure1

We now show actual SQL code for our small example. This SQL

code produces FH in Fig. 1. Notice the three methods can compute

from either F or FV , but we use F to make code more compact.

The SPJ method code is as follows (computed from F): /* SPJ

method */

INSERT INTO F1

SELECT D1,sum(A) AS A

FROM F

WHERE D2=’X’

GROUP BY D1;

INSERT INTO F2

SELECT D1,sum(A) AS A

FROM F

WHERE D2=’Y’

GROUP BY D1;

INSERT INTO FH

SELECT F0.D1,F1.A AS D2_X,F2.A AS D2_Y

FROM F0 LEFT OUTER JOIN F1 on F0.D1=F1.D1

 INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

 ISSN: 2320-1363

4

LEFT OUTER JOIN F2 on F0.D1=F2.D1;

The CASE method code is as follows (computed from F):

/* CASE method */

INSERT INTO FH

SELECT

D1

,SUM(CASE WHEN D2=’X’ THEN A

ELSE null END) as D2_X

,SUM(CASE WHEN D2=’Y’ THEN A

ELSE null END) as D2_Y

FROM F

GROUP BY D1;

Finally, the PIVOT method SQL is as follows (computed

from F):

/* PIVOT method */

INSERT INTO FH

SELECT

D1

,[X] as D2_X

,[Y] as D2_Y

FROM (

SELECT D1, D2, A FROM F

) as p

PIVOT (

SUM(A)

FOR D2 IN ([X], [Y])

) as pvt;

VI. CONCLUSION AND FUTURE

WORK

Horizontal aggregations produce tables with fewer

rows, but with more columns. Thus query optimization techniques

used for standard (vertical) aggregations are inappropriate for

horizontal aggregations. We plan to develop more complete I/O

cost models for cost based query optimization. We need to

understand if horizontal aggregations can be applied to holistic

functions (e.g., rank ()). Optimizing a workload of horizontal

aggregation queries is another challenging problem.

VII. REFERENCES
[1] C. Cunningham, G. Graefe, and C.A. Galindo-Legaria,

“PIVOT and UNPIVOT: Optimization and Execution Strategies in

an

RDBMS,” Proc. 13th Int’l Conf. Very Large Data Bases (VLDB

’04), pp. 998-1009, 2004.

[2] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh, “Data

Cube: A Relational Aggregation Operator Generalizing Group-by,

Cross- Tab and Sub-Total,” Proc. Int’l Conf. Data Eng., pp. 152-

159, 1996.

[3] C. Ordonez, “Horizontal Aggregations for Building Tabular

Data Sets,” Proc. Ninth ACM SIGMOD Workshop Data Mining

and Knowledge Discovery (DMKD ’04), pp. 35-42, 2004.

[4] C. Ordonez, “Vertical and Horizontal Percentage

Aggregations,” Proc. ACM SIGMOD Int’l Conf. Management of

Data (SIGMOD ’04), pp. 866-871, 2004.

[5] H. Wang, C. Zaniolo, and C.R. Luo, “ATLAS: A Small But

Complete SQL Extension for Data Mining and Data Streams,”

Proc. 29th Int’l Conf. Very Large Data Bases (VLDB ’03), pp.

1113- 1116, 2003.

[6] J. Clear, D. Dunn, B. Harvey, M.L. Heytens, and P. Lohman,

“Non- Stop SQL/MX Primitives for Knowledge Discovery,” Proc.

ACM SIGKDD Fifth Int’l Conf. Knowledge Discovery and Data

Mining (KDD ’99), pp. 425-429, 1999.

[7] E.F. Codd, “Extending the Database Relational Model to

Capture More Meaning,” ACM Trans. Database Systems, vol. 4,

no. 4

[8] C. Galindo-Legaria and A. Rosenthal, “Outer Join

Simplification and Reordering for Query Optimization,” ACM

Trans. Database Systems, vol. 22, no. 1, pp. 43-73, 1997.

[9] H. Garcia-Molina, J.D. Ullman, and J. Widom, Database

Systems: The Complete Book, first ed. Prentice Hall, 2001.

[10] G. Graefe, U. Fayyad, and S. Chaudhuri, “On the Efficient

SQL Queries”.

 I.Umamaheswari, received her M.C.A.

degree in Computer Science from Osmania University, Hyderabad,

India, in 2010. Currently pursuing M.Tech in computer science and

engineering at Dr.KVSRCEW Institute of Technology, Kurnool,

India.

 B.Mahesh, Completed M.Tech(CSE)

from JNTUA, Anantapur in 2011.Attended 2 International

conferences & 1 National Conference. Area of

interest is Network Security and Cloud Computing.

